

The Railtechniek van Herwijnen Group

- Head Office Tiel The Netherlands
- Founded in 1983
- Production And Engineering Resources In The Netherlands, Germany, Belgium, France, England, Italy, Turkey and Moldova
- Management: Jürgen van Herwijnen & Menno van Herwijnen
- Employees: 250
- Annual Turnover Of Entire Railtechniek Group: 45 million
- Industries: Surface treatments, Logistics, Automotive,
 Woodworking, Food Industry and Laundry

The Railtechniek van Herwijnen Group

Our Products

- Manual Overhead Conveyors
- Monorail Chain Conveyors
- Power & Free Conveyors
- Floor Conveyors
- Bridge Cranes And Lifting Solutions
- Controls
 - Industrie 4.0
 - Track & Trace
 - Quality Data
 - Etc.

Manual Overhead Conveyors

- Oven Cassette System
- Bridge Crane
- Ergonomical
- Compact Design
- Light Weight Profile
- Expendable With Automatic Movements

Manual Overhead Conveyors Loading and Unloading **Curing Oven Powder Cabins Drying Oven Tact Pre-Treatment Rooms**

Monorail Chain Conveyors

- Continues Running
- Different Hanger Pitch Available
 - More Products In The Oven (Smaller Oven Possible)
 - Less Energy Needed
- Heavy Duty Chain With A Small Profile
- Camel Back Ovens Possible
- Well Build Oven Air Locks
- Ovens Placed On Top Of Each Other For Heat Transfer
- Ovens Placed Next To Each Other For Heat Transfer
- High Temperature Bearings

Power & Free Conveyors

- Stop and Go (Buffering In The Ovens)
- Oven With Own Chain
 - Only One Time Heating Up
 - Saving Energy
 - High Speed
- Possibility For Oven With Doors
- Well Build Oven Air Locks
- Ovens Placed On Top Of Each Other For Heat Transfer
- Ovens Placed Next To Each Other For Heat Transfer
- High Temperature Bearings

Ways To Save Energy Use

- Use Minimum System Height
 - Minimum Use Of Steel
 - Minimum Use Of Steel For The Loadbars
 - Minimum Use Of Oven Sizes
- Chain Light But Not Too Light.
- Power & Free Can Heat Up Separate Oven Chain And Keep It At Temp
- Lighter Hooks / Hangers and Loadbars / Flightbars
- Different Type Ovens
 - Placed Next To Each Other
 - Camel Back Ovens
 - Well Build Oven Air Locks

Working With A Dipping Crane

- Use Crane Systems Above Dipping Tanks
- Half Flight Bar Off
 - Travels To Dipping Tanks
 - Hang Back
- Reliable System
- Cons: Lose Height And Bring Lot Of Mass Into The Ovens
- Fixed Programming
- More Square Meters Of Space Needed For Empty Load-bars
- Extra Heavy Steel Construction In The Oven

Transfer Of Flight Bar From P&F Conveyor To Dip Pre-Treatment Crane

Transfer Of Flight Bar From Dip Pre-Treatment Crane Back To P&F Conveyor

New system - Drop Section Dipping system

- Out Of The Box Thinking NEW DESIGN
- Flight Bar Design
 - Hang Product Directly
 - Use Same Flight Bar Trough The Whole System
- Dipping System With Drop Sections
 - Lower
 - Dip
 - Rise
- Advantages
 - Higher Output With The Dropsection Dipping System
 - Dipping Times Are Independent And Easy To Set Without Affecting Output
 - Easy acces because of walk paths next to the baths

Old Load bar Design & New Load bar Design

Old system - Crane System

New system - Drop Section Dipping system

Calculations

Results		
Product loss	2794500	kJ
Convection loss	48,16216	kW
Exhaust loss	22,7025	kW
Convection + exhaust loss	70,86466	kW
Time in seconds	3600	S

Required power oven (180°C) 847,115 kW

1 KW = ca. 0,1 m3 Gas

Oven Calculation Old System

To be filled in

General		
Temperature outside	18	°C
Temperature oven	180	°C
Time needed	60	min

Convection loss		
Rc-value sandwich panel (180	1,85	m^2*K/W
Surface area sandwichpanel	550	m^2

Product loss		
Specific heat cast iron (Cp)	0,46	kJ/kg*K
Max weight to be heated	37500	kg

Exhaust loss		
Specific heat air (Cp) (180°C)	1,009	kJ/kg*K
Volume exhaust air	500	m^3/h
Density air (80°C)	1	kg/m^3

Results		
Product loss	2049300	kJ
Convection loss	45,5351	kW
Exhaust loss	22,7025	kW
Convection + exhaust loss	68,2376	kW
Time in seconds	3600	s

Required power oven (180°C) 637,488 kW

1 KW = ca. 0,1 m3 Gas

Oven Calculation New System

To be filled in

General		
18	°C	
180	°C	
60	min	

Convection I	oss	
Rc-value sandwich panel (180	1,85	m^2*K/W
Surface area sandwichpanel	520	m^2

Product loss		
Specific heat cast iron (Cp)	0,46	kJ/kg*K
Max weight to be heated	27500	kg

Exhaust loss		
Specific heat air (Cp) (180°C)	1,009	kJ/kg*K
Volume exhaust air	500	m^3/h
Density air (80°C)	1	kg/m^3

Calculations

Oven Calculation Old vs New System

Results		
Required Power Oven New System / Hour	637	kW
Required Power Oven Old System / Hour	847	kW
Difference Between Required Power / Hour	210	kW

1 kWh = ca. 0,1 m3 Gas	210	kW
Gas saving for 1 Oven / Hour	21	m3
Gas saving for 2 Ovens / Hour	42	m3

2 Shifts, with 2 Ovens = 3.000 production hours per year Total money saving with 2 Ovens with 2 Shifts New Design 126000 m3 gas less needed € 138.600,00

Gas Price

€ 1,10 euro / m3

